RHEL: What is "SysRq key" and how to use it

Article Number: 141 | Rating: Unrated | Last Updated: Sat, Jun 2, 2018 9:10 AM

RHEL: What is "SysRq key" and how to use it

```
# Tested on RHEL 5, 6 & 7
# What is the "Magic" 'SysRq' key?
# According to the Linux kernel documentation:
# It is a 'magical' key combo you can hit which the kernel will respond to
  whatever else it is doing, even if the console is unresponsive.
# The 'SysRq' key is one of the best (and sometimes the only) way to determine what
# machine is really doing. It is useful when a system appears to be "hung" or for
# diagnosing elusive, transient, kernel-related problems.
# How do I enable and disable the 'SysRq' key?
# For security reasons, Red Hat Enterprise Linux disables the 'SysRq' key by
default. To
# enable it, run:
echo 1 > /proc/sys/kernel/sysrq
# Or: sysctl -w kernel.sysrq=1
# List of possible values in /proc/sys/kernel/sysrq:
```

```
# 0 - disable sysrq completely
# 1 - enable all functions of sysrq
    >1 - bitmask of allowed sysrq functions (see below for detailed function
description):
      2 - enable control of console logging level
      4 - enable control of keyboard (SAK, unraw)
      8 - enable debugging dumps of processes etc.
     16 - enable sync command
     32 - enable remount read-only
     64 - enable signalling of processes (term, kill, oom-kill)
    128 - allow reboot/poweroff
     256 - allow nicing of all RT tasks
# To disable it:
echo 0 > /proc/sys/kernel/sysrq
# Or: sysctl -w kernel.sysrq=0
# To enable it permanently, set the kernel.sysrq value to 1. That will cause it to
# enabled on start up
# RHEL 5 & 6
vi /etc/sysctl.conf
  kernel.sysrq = 1
# RHEL 7
vi /usr/lib/sysctl.d/50-default.conf
  kernel.sysrq = 1
# Since enabling 'SysRq' gives you physical console access extra abilities, it is
recommended
# to disable it when not troubleshooting a problem or to ensure that physical
console
# access is properly secured.
# How do I trigger a 'SysRq' event?
```

```
# There are several ways to trigger a 'SysRq' event. On a normal system, with an AT
# keyboard, events can be triggered from the console with the following key
# Alt+PrintScreen+[CommandKey]
# For instance, to tell the kernel to dump memory info (command key "m"), you would
hold
# down the "Alt" and "Print Screen keys", and then hit the m key.
# Note that this will not work from an X Window System screen. You should first
change to
# a text virtual terminal. Hit Ctrl+Alt+F1 to switch to the first virtual console
prior to
# hitting the 'SysRq' key combination.
# On a serial console, you can achieve the same effect by sending a Break signal to
# console and then hitting the command key within 5 seconds. This also works for
virtual
# serial console access through an out-of-band service processor or remote console
like
# HP iLO, Sun ILOM and IBM RSA.
# Refer to service processor specific documentation for details on how to send a
Break
# signal; for example, How to trigger SysRq over an HP iLo Virtual Serial Port
# If you have a root shell on the machine (and the system is responding enough for
# do so), you can also write the command key character to the /proc/sysrq-trigger
# This is useful for triggering this info when you are not on the system console or
# triggering it from scripts.
echo 'm' > /proc/sysrq-trigger
# When I trigger a 'SysRq' event that generates output, where does it go?
```

When a 'SysRq' command is triggered, the kernel will print out the information to

```
the
# kernel ring buffer and to the system console. This information is normally logged
# syslog to /var/log/messages.
# Unfortunately, when dealing with machines that are extremely unresponsive,
syslogd is
# often unable to log these events. In these situations, provisioning a serial
console is
# often recommended for collecting the data.
# What sort of 'SysRq' events can be triggered?
# There are several 'SysRq' events that can be triggered once the 'SysRq' facility
# enabled. These vary somewhat between kernel versions, but there are a few that
# commonly used:
# m - dump information about memory allocation
  t - dump thread state information
# p - dump current CPU registers and flags
  c - intentionally crash the system (useful for forcing a disk or netdump)
  s - immediately sync all mounted filesystems
  u - immediately remount all filesystems read-only
  b - immediately reboot the machine
  o - immediately power off the machine (if configured and supported)
  f - start the Out Of Memory Killer (OOM)
 w - dumps tasks that are in uninterruptible (blocked) state
```

Posted - Sat, Jun 2, 2018 9:10 AM. This article has been viewed 5430 times.