

RHEL: XFS basic operations
Article Number: 144 | Rating: Unrated | Last Updated: Sat, Jun 2, 2018 9:14 AM

RHEL: XFS basic operations

Tested on RHEL 6 & 7

XFS filesystem supports up to 16 EiB filesystems and up to 8 EiB and directory

structures

holding tens of millions entries.

On the other hand it is a single node filesystem. It comes integrated in RHEL 7,

in order

to use it on RHEL 6 we need a subscription to the Scalable File System Add-ON.

Although XFS file system supports up to 16 EiB, Red Hat only supports filesystems

up to

100 TiB

Other limitations of XFS is that it's less suited for single threads creating and

deleting

a large number of small files; in addition it uses about twice CPU resources that

ext4 so

under those circumstances it is better to use ext4 filesystems.

In general XFS is best suited for large systems with fast storage.

As already indicated, to use XFS filesystems we need the "Scalable Filesystems"

group /

'xfsprogs' package

Create an xfs filesystem

mkfs.xfs /dev/sdd2

If we know storage parameters, we can specify chunk size ('su', stripe unit)

and/or

stripe width ('sw') in order to improve xfs fs performance. For example, to

create an xfs

file system with a stripe-unit size of 32 KB and 4 units per stripe, we will

specify:

mkfs.xfs -d su=32k,sw=4 /dev/sdd2

meta-data=/dev/sdd2 isize=256 agcount=4, agsize=655352 blks

= sectsz=512 attr=2

data = bsize=4096 blocks=2621408, imaxpct=25

= sunit=8 swidth=32 blks

naming =version 2 bsize=4096 ascii-ci=0

log =internal log bsize=4096 blocks=2560, version=2

= sectsz=512 sunit=8 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

External journal

By default xfs store journal internally. As synchronous metadata writes to the

journal

must complete successfully before any associated data such a layout can lead to

disk

contention. To improve performance we can consider placing journal on a separate

physical

device. To create an external journal, use the "-l logdev=device,size=size"

option during

xfs creation. If we omit the size parameter, mkfs.xfs selects a size based on the

size

of the file system.

mkfs.xfs -l logdev=/dev/sde2 /dev/sdd2

Mount an xfs F.S. without/with external journal

by editing /etc/fstab

/dev/datavg/lv_xfsdata /myxfs xfs defaults 0 0

or

/dev/datavg/lv_xfsdata /myxfs xfs logdev=/dev/datavg/lvxfsjournal 0

0

via 'mount' command

mount /dev/datavg/lv_xfsdata /myxfs

or

mount -o logdev=/dev/datavg/lv_xfsjournal /dev/datavg/lv_xfsdata /myxfs

Grow an xfs filesystem

1.- We CANNOT grow an unmounted xfs

2.- An xfs filesystem CANNOT be shrunk

 # We can increase the size of a XFS file system if there is enough space on

the underlying

 # device. If necessary, increase the size of the logical volume (or disk partition

or LUN

 # and make changes visible to the system).

df -h /myxfs

Filesystem Size Used Avail Use% Mounted on

/dev/sdf1 2.0G 33M 2.0G 2% /myxfs

To specify the final size of the xfs, we use the '-D' option. The size is

expressed in

filesystem blocks. With a default block size of 4096 bytes, to grow our xfs up to

3 GiB:

3 GiB = 3221225472 byte = 786432 blocks

 xfs_growfs -D 786432 /myxfs

meta-data=/dev/sdf1 isize=256 agcount=4, agsize=131530 blks

 = sectsz=512 attr=2

 data = bsize=4096 blocks=526120, imaxpct=25

 = sunit=0 swidth=0 blks

 naming =version 2 bsize=4096 ascii-ci=0

 log =internal bsize=4096 blocks=2560, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

 realtime =none extsz=4096 blocks=0, rtextents=0

 data blocks changed from 526120 to 786432

df -h /myxfs

 Filesystem Size Used Avail Use% Mounted on

 /dev/sdf1 3.0G 33M 3.0G 2% /myxfs

To grow the xfs to the largest size possible:

xfs_growfs -d /myxfs

df -h /myxfs

 Filesystem Size Used Avail Use% Mounted on

/dev/sdf1 10G 33M 10G 1% /myxfs

Reduce an xfs filesystem

Unfortunately, it is not possible to reduce an xfs filesystem

Repair an xfs when file system is not cleanly unmounted, ...

xfs_repair [-l <logdev>] /dev/sdd2

An xfs file system with a dirty log cannot be repaired. To clear out the log you

can

mount, then unmount. If this fails try '-L' option to xfs_repair to force clear

the

log (as a last resort as it may result in a data corruption)

Display/modify label and UUID of an xfs

Display existing label:

xfs_admin -l /dev/sde

label = ""

Set a new label (filesystem has to be unmounted):

xfs_admin -L "NewLabel" /dev/sde

writing all SBs

new label = "NewLabel"

Display existing UUID:

xfs_admin -u /dev/sde

UUID = 51b11165-c59d-44a6-8f4e-3616aaf79a4d

Generate a new UUID (filesystem has to be unmounted):

xfs_admin -U generate /dev/sde

Clearing log and setting UUID

writing all SBs

new UUID = a05ff818-dc74-4d59-aff8-92b360c2a2ed

Clear the UUID (filesystem has to be unmounted):

xfs_admin -U nil /dev/sde

Clearing log and setting UUID

writing all SBs

new UUID = 00000000-0000-0000-0000-000000000000

Let's see what happens if we try to mount an xfs with a nil UUID:

 mount /dev/sde /xfs01

mount: wrong fs type, bad option, bad superblock on /dev/sde,

missing codepage or helper program, or other error

In some cases useful info is found in syslog - try

dmesg | tail or so

dmesg | tail -1

XFS (sde): Filesystem has nil UUID - can't mount

Defragmenting an xfs

xfs_fsr /dev/sdd2

To defragment a single file run xfs_fsr <path_to_file>

If no option is given to 'xfs_fsr' command it will defragment all the xfs on the

server.

Since this can potentially be a very long running operation the 'xfs_fsr' tool

will

stop after a number of seconds specified with the '-t' option (by default 7200

seconds,

this is 2 hours)

Posted - Sat, Jun 2, 2018 9:14 AM. This article has been viewed 15878 times.

Online URL: http://kb.ictbanking.net/article.php?id=144

Powered by TCPDF (www.tcpdf.org)

http://kb.ictbanking.net/article.php?id=144
http://www.tcpdf.org

