

How do I analyze and debug
core files on AIX
Article Number: 512 | Rating: 4/5 from 3 votes | Last Updated: Thu, Feb 21, 2019 8:06 PM

Sometimes, applications stop working and crash for any reason. A core file appears in scene.

First, we’re going to set a PATH for all cores files on the system using syscorepath command.

In order to do this, We’re going to:

1- Create and mount a new filesystem /corefiles

1.1- Create the new filesytem:

1

2

3

4

crfs -v jfs2 -g volgrp2 -m /home/pipe -A yes -a
size=1G

File system created successfully.

1048340 kilobytes total disk space.

New File System size is 2097152

1.2- Mount the filesystem:

1
mount /corefiles

2- Using syscorepath command, we’ll set a PATH where all these cores files will be dumped..

2.1- Set the directory for all cores files:

1
syscorepath -p /corefiles

2.2- To check if the core’s PATH was correctly set, running:

1

2
syscorepath -g /corefiles

/corefiles

3- Analize the core file using dbx command.

Once you get all cores in /corefiles, we’re going to analyse them using dbx command. Follow these steps:

3.1- Get the cause of the core file by running check_core command. In the example ksh93 is the victim:

1

2
/usr/lib/ras/check_core /corefiles/core |tail -1

ksh93

3.2- Debugging with dbx (Provides an environment to debug and run programs) command:

1

2

3

4

5

6

7

dbx /usr/bin/ksh93 /corefiles/core

Type 'help' for help.

[using memory image in /corefiles/core]

reading symbolic information ...warning: no source
compiled with -g

Segmentation fault in strlen at 0xd0105880

0xd0105880 (strlen) 89030000 lbz
r8,0x0(r3)

3.3- Once your are in dbx shell, type ‘where’

1

2

3

4

5

6

7

8

(dbx) where

strlen() at 0xd0105880

varsub() at 0x100475fc

copyto(??, ??) at 0x100494c8

sh_mactrim(??, ??) at 0x1004a5a0

word_trim(??, ??) at 0x1000e340

sh_exec(??, ??) at 0x1000ff88

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

sh_exec(??, ??) at 0x1001043c

sh_exec(??, ??) at 0x1000ff50

sh_exec(??, ??) at 0x10010470

sh_exec(??, ??) at 0x1000fdcc

sh_exec(??, ??) at 0x1000fd94

sh_exec(??, ??) at 0x1000fe08

sh_exec(??, ??) at 0x1000fdb8

sh_exec(??, ??) at 0x1000fe08

sh_exec(??, ??) at 0x1000fdb8

sh_exec(??, ??) at 0x100106d8

sh_exec(??, ??) at 0x1000fdb8

sh_exec(??, ??) at 0x1000fe08

sh_exec(??, ??) at 0x1000fd94

b_dot_cmd(??, ??, ??) at 0x10066e20

sh_funct(??, ??, ??, ??, ??) at 0x1000e500

sh_exec(??, ??) at 0x1000ee88

sh_exec(??, ??) at 0x1000fd94

sh_exec(??, ??) at 0x10010370

sh_exec(??, ??) at 0x1000fdb8

28

29

30

sh_exec(??, ??) at 0x1000fe98

exfile(??, ??) at 0x10000ed8

sh_main(??, ??, ??) at 0x100015dc

pmain.main(??, ??) at 0x10000370

Or you can use others dbx’s commands. Please see man dbx.

1

2

3

4

5

6

7

</pre>

(dbx) thread

(dbx) map

(dbx) func

(dbx) dump

(dbx) quit

<pre>

Just thanks if the post was helpful

Posted - Thu, Feb 21, 2019 8:06 PM. This article has been viewed 6991 times.

Online URL: http://kb.ictbanking.net/article.php?id=512

http://kb.ictbanking.net/article.php?id=512

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

