

How to maximise SSD
performance with Linux
Article Number: 676 | Rating: 5/5 from 2 votes | Last Updated: Fri, May 15, 2020 11:47 AM

Now that SSDs have moved into the realm of affordability there’s little reason not to
use one for your next PC if you’re not already using one. But Linux as with
Windows has spent decades being tuned for spinning platter drives and while
performance is noticeably increased when using an SSD under Linux there are a
number of tweaks and filesystem changes you can do to make the most of your
SSDs.

Filesystem layer
The first of these is easy to do and can both improve performance and more
importantly the longevity of your SSD by reducing unnecessary writes (keeping in
mind the memory used in SSDs has limited write-rewrite cycles).

By default many distributions including Ubuntu use the ‘relatime’ flag for updating
file metadata when files are accessed but you’re unlikely to care about last access
times. Additionally Linux supports TRIM with Ext4. TRIM is important for
maintaining the performance of an SSD over time as files are added deleted and
changed and lets the SSD know which blocks can be safely cleared. No distributions
currently enable it by default but it’s simple to do by adding the ‘discard’ flag to any
mounted SSDs.

To make all these changes open up a terminal and run:

sudo nano -w /etc/fstab

Then for all SSD devices in your system remove ‘relatime’ if present and add
‘noatimenodiratimediscard’ so it looks something like this:

/dev/sda / ext4 noatime,nodiratime,discard,errors=remount-ro 0 1

Scheduler
The scheduler helps organise reads and writes in the I/O queue to maximise
performance. The default scheduler in the Linux kernel is CFQ (Completely Fair
Queuing) which is designed with the rotational latencies of spinning platter drives in
mind. So while it works well for standard hard drives it doesn’t work so well when it
comes to SSDs.

Fortunately the kernel comes with some other schedulers to play with and here the
deadline and NOOP schedulers are ideal. Both are basic schedulers that guarantee
fast turnaround of I/O requests. NOOP is basically no scheduler at all it’s a basic
FIFO (First In First Out) queue whereas deadline does some sorting to guarantee
read requests take priority over write which is useful if you want to guarantee read
responsiveness under heavy writes.

Changing scheduler is easy and even better — you can do it on a per-device basis if
you have a mixed SSD and spinning platter hard drive system using deadline for
SSDs and CFQ for traditional drives. As CFQ is the default change SSDs to use
deadline by opening up a terminal and running:

sudo nano -w /etc/rc.local

Then add the following line for each SSD in your system:

echo deadline >/sys/block/sda/queue/scheduler

Changing ‘sda’ to ‘sdb’ and so on for each SSD device. If you only have SSDs in
your system you can instead set the global scheduler policy to apply to all devices at
boot time.

For Ubuntu and other distributions using GRUB2 edit the /etc/default/grub file and
add ‘deadline’ to the GRUB_CMDLINE_LINUX_DEFAULT line like so:

GRUB_CMDLINE_LINUX_DEFAULT=”quiet splash elevator=deadline”

Then run ‘sudo update-grub2′.

Swap and tmp
Linux is pretty good at only using swap if it really needs to but even so if you’re
installing to an SSD and you have a mechanical hard drive in your system be sure to
put the swap partition on it instead of the SSD. If you’ve already installed Linux and
allocated a swap partition on the SSD you can simply set aside a partition on a
spinning platter drive and edit your /etc/fstab swap entry to point to it instead. For
example assuming /dev/sdb is a normal hard drive:

/dev/sdb2 none swap sw 0 0

And reboot or alternatively issue ‘swapoff -a && swapon -a’ to update on the fly. If
you have a purely SSD system and lots of memory you can disable swap almost
entirely. Keep a swap partition available but add the following to your /etc/rc.local
file:

echo 0 > /proc/sys/vm/swappiness

Linux won’t use swap at all unless
physical memory is completely filled.
Next to reduce unnecessary writes to the SSD move the temp directories into a ram
disk using the ‘tmpfs’ filesystem which dynamically expands and shrinks as needed.

In your /etc/fstab add the following:

tmpfs /tmp tmpfs defaults,noatime,mode=1777 0 0

tmpfs /var/spool tmpfs defaults,noatime,mode=1777 0 0

tmpfs /var/tmp tmpfs defaults,noatime,mode=1777 0 0

If you don’t mind losing log files between boots and unless you’re running a server
you can probably live without them also add:

tmpfs /var/log tmpfs defaults,noatime,mode=0755 0 0

Considering that even everyday applications generate a lot of log files it’s not a bad
idea to do this.

Applications
Any applications that write excessively to a hard drive are also candidates for
moving data. Browsers are a fine example of this — the browser cache is nice but
it’d work just as well from a spinning platter drive and save your SSD from
thousands of writes a day that don’t make a huge difference to you.

To move the cache in Firefox in the browser type ‘about:config’ right-click
anywhere and select New –> String and add ‘browser.cache.disk.parent_directory’.
Edit the variable and point it to a directory on a non-SSD drive or if you don’t mind
losing the cache between boots and you’re using the tweaks above point it to /tmp
for a super-fast memory cache.

Moving the cache in Chrome is a little harder. The directory is hardcoded but you
can use symbolic links to point it to a directory on another drive or to /tmp. You’ll
find the cache under ~/.cache/chromium. You could also redirect the entire .cache
directory as many programs use this for caching data.

Have a look at other applications you use and see if you can redirect any
unnecessary writes as well.

Partition alignment
Finally there’s partition alignment but this can only be done with a clean system
before you install either Linux or Windows. Partition alignment is critical for SSDs
as being memory-based devices data is written and read in blocks known as pages.
When partitions aren’t aligned the block size of filesystem writes isn’t aligned to the
block size of the SSD causing extra overhead as data crosses page boundaries.

Aligning partitions is simply a matter of ensuring the first partition starts on a clean
1MB boundary from the start of the disk ensuring whatever block size the
filesystem uses will align with the block size of the SSD (which can also vary). If
you create partitions using Windows 7 on an empty drive it will start partitions at
the 1MB boundary automatically.

In Linux simply run ‘fdisk -cu (device)’ on the drive you want to partition press ‘n’
for new partition ‘p’ for primary and enter a start sector of at least 2048. The general

rule is that the starting sector must be divisible by 512 but to cater for all variations
of SSD page size and filesystem block size 2048 is a good idea (and equates to
1MB).

Posted - Fri, May 15, 2020 11:47 AM. This article has been viewed 8737 times.

Online URL: http://kb.ictbanking.net/article.php?id=676

Powered by TCPDF (www.tcpdf.org)

http://kb.ictbanking.net/article.php?id=676
http://www.tcpdf.org

