

IBM AIX MPIO: Best practices
and considerations
Article Number: 87 | Rating: Unrated | Last Updated: Sun, Nov 22, 2020 12:14 AM

IBM AIX MPIO: Best practices
and considerations
Shannon Moore and Gary Domrow
Published on January 20, 2014

FacebookTwitterLinked InGoogle+E-mail this page

15

http://www.facebook.com/sharer.php?u=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Faix%2Flibrary%2Fau-aix-mpio%2Findex.html&t=IBM%20AIX%20MPIO%3A%20Best%20practices%20and%20considerations

IBM Power Systems™ servers are designed to offer very high stand-alone availability in the industry.
Enterprises must occasionally restructure their infrastructure to meet new IT requirements and handle
scheduled outages (such as scheduled system maintenance).

MPIO best practices have never been officially documented. There have been some documents and IBM
Redbooks® that have briefly mentioned certain MPIO aspects for specific scenarios and environments,
but recommendations pertaining to MPIO configurations, in general, have been lacking.

System reliability and availability are increased by a careful consideration of the user-modifiable options
in each system configuration. This article outlines the best practice configuration considerations that
pertain to MPIO on AIX.

Some of the features described in this article are specific to particular technology levels of AIX, or are
specific to the path control module (PCM) supplied with AIX. If using Subsystem Device Driver Path
Control Module (SDDPCM) or a vendor-supplied Object Data Manager (ODM) package (often referred
to as a host attachment kit, or something similar), then some of these options might be unavailable, and
other options can be added.

The AIX MPIO infrastructure allows IBM or third-party storage vendors to supply ODM definitions,
which have unique default values for the important disk attributes. Thus, for example, the default value
for attributes on an hdisk representing a logical unit number (LUN) from an IBM System Storage® SAN
Volume Controller (SVC) might be different from the default values for an hdisk representing a LUN on
an IBM System Storage DS8000® system. As a result, the default values for the attributes are
appropriate for most situations. Generally, the hdisk attributes should be left at their default values,
especially the attributes that are not mentioned in this article.

The disk attributes described in the following sections can be displayed by using the lsattr command, and
can be changed with the chdev command. The path attributes, such as path_priority, can be displayed or
set by using the lspath and chpath commands. Refer to the AIX publications or AIX man pages for
details on those commands.

This article does not address the attributes associated with the adapters being used to attach to the MPIO
devices. Some of those attributes might also affect error detection and recovery times. In particular, the
fc_err_recov attribute for Fiber Channel adapters is an important one to consider.

Consideration 1: MPIO algorithm and
path_priority

The MPIO algorithm setting determines whether:

The PCM can attempt to distribute I/O across all available paths to a given LUN
The I/O will be active only on one path at a time
The I/O flow will be weighted based on a combination of the algorithm setting and the
path_priority settings per disk

A device that has multiple controllers can designate one controller as the active or preferred controller.
For such a device, the PCM uses just the paths to the active or preferred controller as long as there is at
least one such path that is enabled and not failed. Thus, algorithms that use all available paths might only
use a subset of those paths at one time for such devices.

1
algorithm = fail_over

This is the default algorithm for most disks using the ODM definitions included with AIX. Some third-
party ODMs use a different default value.

With this algorithm, I/O can only be routed down one path at a time. With algorithm=fail_over, the PCM
keeps track of all the enabled paths (per disk) in an ordered list. If the path being used to send I/O fails
or is disabled, the next enabled path in the list is selected and I/O is routed to that path. The sequence for
path selection within the list is customizable by modifying the path priority attribute on each path, which
will then sort the list by the ascending path priority value.

The fail_over algorithm is always used for virtual SCSI (VSCSI) disks on a Virtual I/O Server (VIOS)
client, although the backing devices on the VIOS instance might still use round_robin, if required.

Fail_over is also the only algorithm that might be used if using SCSI-2 reserves
(reserve_policy=single_path).

1
algorithm = round_robin

With this algorithm, I/O will be distributed and activated across all enabled paths to a disk. The
percentage of I/O routed down each path can be weighted by setting the path_priority attribute on each
path for each disk. If a path fails or is disabled, it is no longer used for sending I/O. The priority of the
remaining paths is then recalculated to determine the percentage of I/O that should be sent down each
path. If all paths have the same path_priority value, the PCM attempts to equally distribute I/O across all
enabled paths. Optimal performance in a failed path scenario is to ensure that the ordered path list
alternate paths between separate fabrics.

1
algorithm = shortest_queue

This algorithm is available in the latest technology levels of AIX for some devices. The algorithm
behaves very similar to round_robin when the load is light. When the load increases, this algorithm
favors the path that has the fewest active I/O operations. Thus, if one path is slow due to congestion in
the storage area network (SAN), the other less-congested paths are used for more of the I/O operations.
The path priority values are ignored by this algorithm.

Recommendation: If using SCSI-2 reserves or vSCSI disks, then fail_over must be used. For other
situations, shortest_queue (if available) or round_robin enable maximum use of the SAN resources.

Consideration 2: Path health check
settings

Path health check mode (hcheck_mode)

The path health check mode determines the paths that the MPIO's path health checker will probe for
path availability during normal business operations. The health checker never probes paths that are in a
Disabled or Missing state. Paths in those two states must be recovered manually with chpath (for
Disabled paths) or with cfgmgr (for Missing paths). If a disk is not open and in use as is the case, for
instance, when its volume group is varied off, no path health checks will take place down any path for that
disk.

There are three possible modes for the MPIO path health checker.

hcheck_mode = nonactive: In this mode, the PCM sends health check commands down paths which have
no active I/O. That includes paths with a state of failed. If the algorithm selected is fail_over, then the
health check command is also sent on each of the paths that have a state of enabled but have no active
I/O. If the algorithm selected is round_robin or shortest_queue, then the health check command is only
sent on paths with a state of failed, because the round_robin and shortest_queue algorithms both keep all
enabled paths active with I/O when the disk is in use. If the disk is idle, the health check command is
sent on any paths that do not have a pending I/O at the expiration of the health check interval.

hcheck_mode = enabled: In this mode, the PCM sends health check commands down all enabled paths,
even paths that have other active I/O at the time of the health check.

hcheck_mode = failed: In this mode, the PCM only sends path health checks down paths that are marked
as failed.

Recommendation: The default value for all devices is nonactive, and there is little reason to change this
value unless business or application requirements dictate otherwise.

Path health check interval (hheck_interval)

The path health check interval is the interval, in seconds, at which MPIO path health checks will probe
and check path availability of open disks, based on the hcheck_mode setting.

A hcheck_interval = 0 setting disables MPIO's path health check mechanism, which means any failed
paths require manual intervention to recover or re-enable.

Recommendation: The best practice guideline for hcheck_interval is that it should be greater than or
equal to the rw_timeout (read/write timeout) value on the disks. Also note that it is not a good idea to
lower the rw_timeout value in order to set a lower health check interval. The default rw_timeout values
set in ODM are based on the recommendations of the device manufacturers for each device type. The
following section provides technical details regarding this best practice recommendation.

It might be tempting to think that a smaller health check interval is preferable as it might lead to faster
detection or recovery of failed paths. However, the cost of setting a lower health check interval far
outweighs the benefits. There are several reasons for this.

Because the health check commands can be sent on every path of every open disk (depending on
hcheck_mode) at the expiration of the health check interval, a small health check interval can
quickly use up a lot of bandwidth on the SAN if there are a large number of disks.

The health check commands count against the disk's queue_depth (only to be changed upon
recommendation from the storage vendor), and they receive a higher priority for processing than
normal user I/O. Because error scenarios typically take longer than good path scenarios, a small
health check interval can negatively impact the user I/O on good paths when there are one or
more failing paths. Note that because queue_depth is a function of the disk driver, queue_depth
is on a per-LUN basis rather than a per-path basis. For example, assume that a device has a
queue_depth of 8, with eight paths. If four of those paths have failed, the health check commands
on those paths might take anywhere from a few seconds up to rw_timeout to fail. During that
time, at least four of the eight commands in the queue_depth will be consumed by the health
check commands, leaving an effective queue_depth of only four commands for the good paths
and regular I/O for that disk.

It is not always desirable to recover a path quickly. In a situation where a link is suffering from
repeated, intermittent failures, the more quickly the link is recovered by a health check
command, the more likely it is that a user I/O will be sent on that link only to fail due to the
intermittent errors. A longer health check interval reduces the use of links with frequent but
intermittent failures.

AIX implements an emergency last gasp health check to recover paths when needed. If a device
has only one non-failed path and an error is detected on that last path, AIX sends a health check
command on all of the other failed paths before retrying the I/O, regardless of the health check
interval setting. This eliminates the need for a small health check interval to recover paths
quickly. If there is at least one good path, AIX discovers it and uses it before failing user I/O,
regardless of the health check interval setting.

Recent technology levels of AIX also make use of asynchronous events from the Fibre Channel (FC)
device drivers to manipulate path states. This makes AIX less dependent on the health check commands
to detect path failures or to recover paths when using Fibre Channel.

For most cases, the default value of hcheck_interval is appropriate. There have been some storage
vendors who, in older versions of their ODM definitions, had set hcheck_interval to a value smaller than
the rw_timeout value. The previous recommendation from AIX development stands in those cases:
Increase hcheck_interval such that it is greater than or equal to rw_timeout value. It is much more likely
to be a good idea to increase the health check interval than to decrease it. Better performance is achieved
when hcheck_interval is slightly greater than the rw_timeout value on the disks.

Extreme cases of the problems described in bullets 2 and 3 above can cause severe degradation of I/O
performance if the health check interval is set to a small value.

Consideration 3: Time out policy

Recent technology levels of AIX include a timeout_policy attribute for some devices. This attribute
indicates the action that the PCM should take when a command timeout occurs. A command timeout
occurs when an I/O operation fails to complete within the rw_timeout value on the disk. There are three
possible values for timeout_policy.

timeout_policy = retry_path: This represents the legacy behavior, where a command may be retried on
the same path that just experienced a command timeout. This is likely to lead to delays in the I/O
recovery, as it is likely that the command will continue to fail on this path. Only after several consecutive
failures, will AIX fail the path and try the I/O on an alternate path.

timeout_policy = fail_path: This setting causes AIX to fail the path after a single command timeout,
assuming that the device has at least one other path that is not in the failed state. Failing the path forces
the I/O to be retried on a different path. This can lead to much quicker recovery from a command time

out and also much quicker detection of situations where all paths to a device have failed. A path that is
failed due to timeout policy can later be recovered by the AIX health check commands. However, AIX
avoids using the path for user I/O for a period of time after it recovers to help ensure that the path is not
experiencing repeated failures. (Other PCMs might not implement this grace period.)

timeout_policy = disable_path: This setting causes the path to be disabled. A disabled path is only
recovered by manual user intervention using the chpath command to re-enable the path.

Recommendation: If this attribute is available on the device, a value of fail_path is the recommended
setting.

Consideration 4: How many paths to
configure for AIX MPIO

In an MPIO configuration, more is not necessarily better. In fact, an excessive number of paths in an
MPIO configuration can actually contribute to system and application performance degradation in the
event of SAN, storage, or Fibre Channel fabric issues or failures.

The general recommendation for the number of paths to configure in an MPIO environment is 4 to 8 per
LUN, with 16 paths being recommended as the maximum, to be used only in specialized situations. It is
important to note that MPIO does support many more paths than 8 or 16, but from a design and functional
perspective, four to eight paths have been proven to be the most effective.

Businesses that need to configure more than eight paths per LUN need to carefully consider the
following details:

1. When an error is encountered on an MPIO disk, error recovery normally takes place down all
configured paths. The most common types of disk or SAN errors that occur will also lead to
multiple retry attempts on each path for each failed I/O. With "N" paths, there could easily be a
situation where a disk encounters an error that would lead to five tries on each path, multiplied by
the rw_timeout value on the disks. So, total recovery per I/O could potentially be:

1

(N * rw_timeout value * 5)

If multiple disks were to encounter similar issues at the same time, the consequences for
applications might be severe. For example, a marginal, constantly bouncing link in the SAN
fabric might lead to this type of error recovery, resulting in extreme performance degradation.

This situation is somewhat ameliorated by setting the timeout_policy attribute to fail_path, if that
attribute is available with the device type that is being used. However, the timeout policy attribute
cannot account for all possible error scenarios.

2. With the round_robin algorithm, having too many paths results in overhead as the PCM attempts
to load balance I/O among the many paths.

3. With the fail_over algorithm, the PCM encounters additional overhead in determining the paths
to use for failover in a failed path scenario.

4. Each configured path requires additional memory in AIX, as each path is represented by data
structures in the MPIO device drivers. Having too many paths to a large number of disks can
reduce the amount of memory available to the rest of the system for running applications.

5. As noted above, the health check commands count against the queue depth for the device. So,
health check processing has a greater effect on devices with a large number of paths, especially
with devices that have smaller queue depths, and especially when there are paths in the failed
state.

The optimal configuration for a device having four paths on AIX is to use four physical paths to the
storage subsystem with a 1:1 relationship between the host-side host bus adapter (HBA) port and the
remote storage ports. If using multiport adapters on the AIX host, split at least half the paths among
separate physical adapters for optimum redundancy. The AIX and device ports can be connected to the
same FC switch or to two different switches in the same fabric. If using two switches, there is no single
point of failure. However, certain switch or port failures might affect an entire SAN, thus impacting all
four paths.

One possible eight-path configuration that provides full redundancy uses two distinct SAN fabrics. The
AIX node and the storage device each have two ports connected to each of the two SAN fabrics, using a
total of four ports on AIX and four ports on the storage device. There are four paths between AIX and

the storage device for each of the two distinct SAN fabrics, for a total of eight paths. Thus, there is no
single point of failure for either SAN fabric, and there are redundant SAN fabrics. (Note: This is just an
example. It is completely possible to have full redundancy with four paths per LUN using dual fabrics.)

The only case for more than eight paths is for specialized storage devices that configure a cluster of
controllers, or for devices using Peer-to-Peer Remote Copy (PPRC). For example, an hdisk representing an
IBM HyperSwap® pair of LUNs on two DS8000 devices could have 16 paths if each of the DS8000
systems used to form the HyperSwap pair are configured in the 8-path configuration described above.
After the two 8-path hdisks are configured as a single HyperSwap enabled hdisk, it will have 16 paths.

There are other possible configurations beyond what is described here that can be considered. However,
as noted above, going beyond eight paths can be more problematic than helpful, and should be carefully
considered.

Recommendation: Configure 4 or 8 paths per disk, or up to 16 paths for rare situations. Carefully
consider the impacts of extra, unnecessary redundancy before using more paths.

Consideration 5: Operational
considerations

Scheduled maintenance: AIX MPIO is capable of robust error detection and recovery. However this
error detection and recovery might take some time, and that delay might impact applications. If
scheduled maintenance is planned for a SAN or for a storage device, it is best to identify the disk paths
that will be impacted by that maintenance and use the rmpath command to manually disable those paths
before starting the maintenance. AIX MPIO stops using any disabled or Defined paths, and therefore, no
error detection or recovery will be done as a result of the scheduled maintenance. This ensures that the
AIX host does not go into extended error recovery for a scheduled maintenance activity. After the
maintenance is complete, the paths can be re-enabled with cfgmgr. (Note: When disabling multiple paths
for multiple LUNs, rmpath is simpler than chpath, as it does not have to be run on a per-disk basis.)

The lspath command (or in newer technology levels, the lsmpio command) can be used to determine the
MPIO paths that are associated with specific SAN ports.

Changing attributes: For most attributes and most levels of AIX, attributes could historically only be

changed on devices that were not in use. For disks, this meant that the disk must be closed (for example,
volume group varied off) in order to change attributes. If the disk could not be closed, such as the disks
containing rootvg, then the user had to include the -P flag in the chdev command to write the attribute
change to ODM and then restart AIX in order for the attribute to take effect.

For the newest technology levels of AIX (at the time of publishing this article), some disk attributes on
some devices support the -U flag on the chdev command. This flag instructs chdev to attempt a dynamic
update of the attribute value. With this flag, the attribute value can be changed without closing the disk
and the change takes effect immediately.

TST ---hdisk1---
algorithm load_balance
hcheck_interval 60
hcheck_mode nonactive

PROD ---hdisk1---
algorithm round_robin
hcheck_interval 60
hcheck_mode nonactive

for x in `lspath |awk '{print $2}' |sort -k1.6n |uniq`; do status=`lsattr -El ${x} | awk '{print $1" "$2}' |
egrep "algorithm|hcheck_interval|hcheck_mode|rw_timeout|timeout_policy"`; echo "---${x}---"; echo
"${status}"; echo " "; sleep 1 ; done

for x in `lspath |awk '{print $2}' |sort -k1.6n |uniq`; do status=`lsattr -El ${x}`; echo "---${x}---"; echo
"${status}"; echo " "; sleep 1 ; done

New version from Shannon Moore

This document describes best practices and considerations for an optimal MPIO configuration for AIX.

By Shannon Moore, Gary DomrowOriginally Published January 20, 2014 on Developerworks | Updated September 1, 2020

Consideration 1: MPIO algorithm and path_priority

Consideration 2: Path health check settings

Consideration 3: Time out policy

Consideration 4: How many paths to configure for AIX MPIO

1.

2.
3.

4.

5.
6.

Consideration 5: Operational considerations

Posted - Wed, May 30, 2018 10:47 AM. This article has been viewed 11309 times.

Online URL: http://kb.ictbanking.net/article.php?id=87

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

